Nascent vibrational energy distributions of $S_2(X^3\Sigma_g^-)$ generated in the $S(^1D) + OCS$ reaction. <u>Shogo Tendo</u>,¹ Hiroshi Kohguchi,¹ Katsuyoshi Yamasaki¹ ¹ Department of Chemistry, Graduate School of Science, Hiroshima University

Bersohn and colleagues¹ reported that the $S(^{1}D) + OCS$ reaction generated the only vibrationless level (v = 0) of $S_{2}(X^{3}\Sigma_{g}^{-})$. We, however, have recently detected the highly excited vibrational levels up to v = 19.² In the present study, the nascent vibrational distributions of $S_{2}(X^{3}\Sigma_{g}^{-})$ have been determined by kinetic analysis to ascertain the cause of the difference between the two studies.

A gaseous mixture of OCS(10 mTorr)/He(5 Torr) in a flow cell at 298 K was irradiated with laser light at 248 nm. The reaction of the photoproduct $S(^{1}D)$ with OCS generates $S_{2}(X^{3}\Sigma_{g}^{-})$. A single vibrational level of $S_{2}(X^{3}\Sigma_{g}^{-}, v=1-4)$ was detected with laser-induced fluorescence (LIF) via the $B^{3}\Sigma_{u}^{-} - X^{3}\Sigma_{g}^{-}$ transition.

The time-resolved LIF intensities of the vibrational levels were recorded at varying pressures of SF₆ (Fig. 1). Kinetic analysis by the integrated profiles method (IPM) has given the pseudo first-order decay rates k_{1st} . The rate coefficients for vibrational relaxation of $S_2(X^3\Sigma_g^-, v=1-3)$ by SF₆ have been determined from the slopes of the straight line fit of the plots of k_{1st} vs [SF₆] (Fig. 2). The relative detectability of the adjacent vibrational levels also has been obtained in the IPM analysis, giving the nascent relative vibrational populations: 1.0/0.69/0.47/0.49 for v = 0/1/2/3. The findings indicate that vibrationally excited $S_2(X^3\Sigma_g^-)$ is generated in the S(¹D) + OCS reaction.

 $S_2(X^3\Sigma_g^-, v=0)$ with low reactivity probably accumulated by relaxation of the levels $v \ge 1$ in their static cell of Bersohn's group, and they observed only v = 0 whose population was predominant over $v \ge 1$. On the other hand, the flow cell in the present study prevents v = 0 form accumulating in the observed volume.

References

1. van Veen, N., et al. J. Chem. Phys. 1983, 79, 4295-4301.

2. Yamashita, J., et al. J. Chem. Phys. 2014, 118, 9330-9337.

Fig. 1. Time-resolved LIF intensities of $S_2(X^3\Sigma_g^-, v = 1-3)$ at varying pressures of SF₆.

Fig. 2. [SF₆]-dependence of the pseudo first-order decay rates of $S_2(X^3\Sigma_g^-, v = 1-3)$. The intercepts correspond to the relaxation by He.