1A1aDetection of Electronically Excited NH2 product in the
Ultraviolet Photodissociation of Methylamine
Yuuki Onitsuka, Shogo Tendo, Hiroki Goto, Katsuyoshi Yamasaki,
Hiroshi Kohguchi

Department of Chemistry, Graduate School of Science, Hiroshima University

Methylamine (CH₃NH₂) which is the simplest ammonia (NH₃) derivative, has an electronic structure similar to NH₃. The non-adiabatic dynamics around the conical intersection of NH₃ has been interpreted as a nuclear motion that causes the branching to the electronically ground and excited products: NH₃ + hv \rightarrow NH₂(\tilde{X}^2B_1) + H / NH₂(\tilde{A}^2A_1) + H. [1] Substitution of a H atom of NH₃ for a CH₃ group, allows the system to have the C-N and N-H bond cleavage channels. Although these two σ -bonds are known to dissociate following the UV absorption, the details of the dissociation mechanisms have not been clear. Particularly, the generation of the electronically excited NH₂ fragment is not established in both experimental and theoretical studies. [2]

Ion-imaging and dispersed fluorescence spectroscopy are applied for the photodissociation dynamics study of CH₃NH₂ in the photolysis wavelength range of 205-240 nm. The CH₃ product is found to populate a wide range of ro-vibrational states. The CH₃ fragment generated in the v = 0 state shows the bimodal kinetic energy distribution. The internal energy analysis of the NH₂ counter-product indicates that a lower kinetic energy component, which was observed only with the CH₃(v = 0) fragment, energetically matches the electronically excited \tilde{A}^2A_1 state. The dispersed fluorescence spectrum, whose band structure is assigned to the $\tilde{A}^2A_1 \rightarrow \tilde{X}^2B_1$ transition, provides evidence of the CH₃(v = 0) + NH₂(\tilde{A}^2A_1) pathway. [3] The branching mechanism of the product pathway is discussed in term of nuclear dynamics in the long-range region, [4] where the conical intersection between the excited and ground state potential energy surfaces can play a significant role.

References

[1] M. N. R. Ashfold, R. N. Dixon, M. Kono, D. H. Mordaunt, and C. L. Reed, *Phil. Trans. Roy. Soc.*, **355**, 1659 (1997).

[2] H. Xiao, S. Maeda, and K. Morokuma, J. Phys. Chem. A, 117, 5757 (2013).

[3] Y. Onitsuka, K. Yamasaki, H. Goto, and H. Kohguchi, J. Phys. Chem. A, 120, 8584 (2016).

[4] J. O. Thomas, K. E. Lower, and C. Murray, J. Phys. Chem. A, 118, 9844 (2014).