1D3b Detection of Sulfur Atoms (¹D and ³P) and Branching Ratio between Reaction and Quenching in the S(¹D) + OCS System (Hiroshima Univ.) <u>Hiroki Goto</u>, Haruka Tanimoto, Shinwa Miyachi, Hiroshi Kohguchi, Katsuyoshi Yamasaki

Carbonyl sulfide (OCS) is a sulfur compound at the highest concentration in the atmosphere. In the stratosphere, sulfur atoms in the two electronic states ³P and ¹D are generated in the photolysis of OCS over the wavelengths $\lambda \sim 200-250$ nm and the subsequent processes are closely related to the generation of SO_x in the atmosphere. We have constructed a highly sensitive detection system of sulfur atoms and performed experiments on the chemical kinetics of reaction and quenching.

A gaseous mixture of OCS (15–60 mTorr) and He (3–78 Torr) was introduced to a flow cell at 298 K. The sample gas was irradiated with a KrF laser (248 nm), and the resultant $S(^{1}D)$ and $S(^{3}P_{J})$ were detected by two photon laser-induced fluorescence (2P - LIF) technique via the schemes shown as the insets in Fig. 1.

The time profiles of the 2P-LIF intensities of the two electronic states were recorded as a function of the delay time between the photolysis and probe laser (Fig. 2). The nice correspondence between the decay of $S(^{1}D)$ and growth of $S(^{3}P)$ indicates that $S(^{3}P)$ is generated by quenching of $S(^{1}D)$. Recorded profiles at varying pressures of OCS were fit to the single-exponential decay (¹D) and growth $({}^{3}P_{2})$, and the pseudo first-order rate coefficients k were determined. The [OCS]dependence of k has given the overall rate coefficients for the $S(^{1}D) + OCS$ reaction to be $(2.8 \pm 0.3) \times 10^{-10}$ and $(2.7 \pm 0.3) \times$ 10^{-10} cm³ molecule⁻¹ s⁻¹ from the profiles $S(^{1}D)$ and $S(^{3}P_{2})$, respectively. of Measurements of the 2P-LIF intensities of $S({}^{3}P_{2})$ in the absence and presence of N_{2} (2 Torr), which is an efficient quencher of $S(^{1}D)$, have determined the branching ratio between reaction and quenching of the $S(^{1}D) + OCS$ system to be 0.19 : 0.81.

Fig. 1. 2P-LIF excitation spectra of (a) $S(^{1}D)$ and (b) $S(^{3}P_{2})$. The insets show the schemes of detection. (a) $\lambda_{1} = 288.16$, $\lambda_{2} = 166.7$ nm; (b) $\lambda_{3} = 308.17$, $\lambda_{4} = 180.7$ nm.

Fig. 2. Time-resolved 2P - LIF intensities of $S(^{1}D)$ and $S(^{3}P_{2}) \cdot p(OCS) = 60 \text{ mTorr}, p(He) = 3.0 \text{ Torr}$