1C1a Effect of hydrogen-bonding on the trans to cis photoisomerization of Methyl 4-Hydroxycinnamate

○<u>Daiki Shimada</u>¹, Yoshiya Inokuchi¹, Masahiro Ehara², Takayuki Ebata¹ Graduate School of Science, Hiroshima Univ.¹, Institute for Molecule Science²

Introduction: Methyl 4-hydroxycinnamate (OMpCA) is known as a model compound of photoinduced trans \rightarrow cis isomerization of Photoactive Yellow Protein (PYP). However, the dynamics of the isomerization hasn't been fully understood yet. In order to elucidate the dynamics, the lifetime of the S₁ state of OMpCA and its hydrogen bonded complexes with water and ammonia have been investigated in the gas phase by picosecond pump-probe spectroscopy. The result is analyzed by ab initio calculation.

Experiment: Gas phase OMpCA and its hydrogen bonded complexes were generated under cold condition by using supersonic free jet expansion. The S_1 - S_0 electronic spectra of these species were measured by resonant two-photon ionization (R2PI) method with the mass selection. The S_1 state lifetimes of OMpCA and the hydrogen bonded complexes were measured by picosecond pump-probe spectroscopy. (Figure 1)

Result and Discussion: In bare OMpCA, the lifetime at S_1 band origin is obtained to be 8-9 ps. Thus the isomerization occurs in this time scale in the monomer. On the other hand, the lifetimes of OMpCA-H₂O and OMpCA-NH₃ in its S_1 origin increase as long as 1.1 ns and 6.0 ns. In addition, we found in case of OMpCA-H₂O the lifetime of the complexes suddenly

decreases with excess energy of 300-600 cm⁻¹. Figure 2 shows the plots of the decay rate constant of OMpCA-H₂O and OMpCA-NH₃ vs excess energy. In the OMpCA-H₂O, the rate constants sharply increase at ~400 cm⁻¹ for s-trans and at ~600 cm⁻¹ for s-cis conformer respectively. These energies are thought to be the thresholds for the trans \rightarrow cis isomerization of OMpCA-H₂O. It is clear that the hydrogen bonding at the phenolic OH inhibit the isomerization. Also the H-bonding strength is also important for this inhibition. We discuss this result on the basis of the theoretical calculation.

in S₁ against excess energy

trans

cis

Figure 1. Scheme of pump-probe spectroscopy