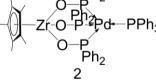

Syntheses of Zr-Pd heterobinuclear complexes having two or three OPPh₂ bridges


- difference in reactivity toward diphenylvinylphosphine oxide-

○<u>Yoshihisa Koro</u>, Tsutomu Mizuta Graduate School of Science, Hiroshima University

The P-H bond addition of $Ph_2P(O)H$ to $Ph_2P(O)CH=CH_2$ was carried out using $Cp_2Zr(\mu-OPPh_2)_2PdMe_2$ as a catalyst precursor which had been reported to be transformed to $H(PMePh_2)Pd(\mu-OPPh_2)_3Zr(\mu-OPPh_2)_3PdH(PMePh_2)$ by a reaction with the substrate $Ph_2P(O)H$ and a cocatalyst PMePh_2. The addition proceeded quickly under mild conditions at 40 °C for 10 min to give $Ph_2P(O)CH_2CH_2P(O)Ph_2$ with 88% yield. To probe the interaction of the catalyst with $Ph_2P(O)CH=CH_2$, we prepared new Zr-Pd heterobinuclear complexes having two or three $OPPh_2$ bridges, 1 or 2 respectively, and examined the catalyst-substrate interaction using these complexes as catalyst models.

 $[Cp*ZrCl_2(\mu-OPPh_2)_2PdCl_2]HNEt_3 (1)$ was characterized by ${}^{31}P{}^{1}H$ and ${}^{1}HNMR$, X-ray analysis, and elemental analysis, while $Cp*Zr(\mu-OPPh_2)_3PdPPh_3$ (2) was identified by only ${}^{31}P{}^{1}H$ and ${}^{1}HNMR$ spectra. The complex 1 having the two $OPPh_2$ bridges was found to immediately react with $Ph_2P(O)CH=CH_2$ to give new ${}^{31}P{}^{1}H$ NMR signals of an adduct formed. On the other hand, the complex 2 having the three $OPPh_2$ bridges did not show any interaction with

 $Ph_2P(O)CH=CH_2$. The results indicate the number of the bridge plays a critical role in the catalyst-substrate interaction. In the case of the three-OPPh₂-bridge complex 2, $Ph_2P(O)CH=CH_2$ can not approach to the complex probably due to the substantial steric hindrance.