## Detection of H atoms by 2-photon LIF technique and Its Application to Chemical Kinetics

O<u>Mari IZUMI</u><sup>1</sup>, Hiroshi KOHGUCHI<sup>1</sup>, Nanase KOHNO<sup>1</sup>, and Katsuyoshi YAMASAKI<sup>1</sup> <sup>1</sup> Grad. Sc. Sci., Hiroshima Univ.

Hydrogen atom is a constituent element of various chemical species and concerned with many reactions. The yields of H atoms enable us to elucidate the mechanisms of chemical reactions. We have constructed a highly sensitive detection system of H atoms and applied it to the kinetic studies on several chemical reactions.

A schematic diagram of the detection system is shown in Fig. 1. It consists of a MgF<sub>2</sub> focusing lens, optical interference filter for the Lyman- $\alpha$  radiation, and VUV photomultiplier tube (PMT). The detection scheme is: (i) H atom in 1s(<sup>1</sup>S) state is excited to 2s(<sup>2</sup>S) state by two photons at 243.2 nm from a dye laser; (ii) The 2s(<sup>2</sup>S) state is transferred to 2p(<sup>2</sup>P) state by collisions with ambient gases; (iii) Lyman- $\alpha$ emission, 2p(<sup>2</sup>P)  $\rightarrow$  1s(<sup>1</sup>S), at 121.6 nm is detected with the PMT. The 2-photon LIF excitation spectrum of H atoms generated in the photolysis of NH<sub>3</sub> at 193 nm is shown in Fig. 2.

Fig. 3 shows the time profiles of H atoms generated in a gaseous mixture  $O_3/H_2/CO/He$ irradiated with a light at 266 nm. H atoms produced in a reaction  $OH(v) + CO \rightarrow H + CO_2$ following  $O(^1D) + H_2 \rightarrow OH(v \le 4) + H$  were detected, and the time-resolved LIF intensities of H atoms were recorded as a function of the delay times between the photolysis and probe laser. The time profiles of H atoms generated in the reaction OH(v) + CO [Fig. 3(c)] is wellreproduced by simulation with the rate coefficients obtained in the analysis of the time profiles of OH(v = 0 - 4).



Fig. 1. A schematic diagram of the detection system of H atoms.



Fig. 2. 2-photon LIF excitation spectrum of H atoms.  $P(NH_3) = 5$  mTorr, P(He) = 10 Torr. The inset shows the scheme of detection.



Fig. 3. Time-resolved LIF intensities of H atoms.  $P(O_3) = 0.2 \text{ mTorr}, P(H_2) = 150 \text{ mTorr}, P(He) = 10$ Torr. (a) P(CO) = 400 mTorr and (b) P(CO) = 0mTorr. (b) subtracted from (a) leaves (c). The black line denotes the results of simulation.