Direct Determination of the Rate Coefficient for the Reaction of O(¹D) with OCS

○<u>K. Orimi</u>¹, S. Watanabe¹,H. Kohguchi¹, K. Yamasaki¹ ¹ Grad. Sc. Sci., Hiroshima Univ.

<u>1. Introduction</u> The reaction of O with OCS, leading to SO and CO, is one of the important reactions in the atmosphere. There have been many reports on the reactions of $O({}^{3}P)$. The rate coefficient of reaction $O({}^{3}P) + OCS$, 1.3×10^{-14} cm³ molecule⁻¹ s⁻¹, is small due to the barrier along the reaction coordinate.¹ The reaction of $O({}^{1}D)$ with OCS; on the other hand, has rarely been studied. In the present study, we have detected vibrationally excited SO(X³ Σ^{-}) generated in the $O({}^{1}D) + OCS$ reaction, and determined the overall rate coefficient.

<u>2. Experiments</u> A gaseous mixture of $O_3/OCS/He$ at 298 K in a flowing cell was irradiated at 266 nm from a YAG laser. Vibrationally excited $SO(X^3\Sigma^-, v = 6 - 8 \text{ and } 18 - 21)$ was detected via laser-induced fluorescence (LIF) of the $B^3\Sigma^- - X^3\Sigma^-$ transition with a YAG pumped dye laser. To record the time profiles of the LIF intensities, the wavelength of the probe laser was tuned to a rotational line, and time delays between the photolysis and probe laser were scanned with a pulse delay controller.

<u>3. Results and discussion</u> The rotational lines in the LIF excitation spectrum with 0-8 band were assigned to the main branches of the ${}^{3}\Sigma^{-}-{}^{3}\Sigma^{-}$ transition (Fig. 1). The LIF excitation spectra of 2–19, 2–20, and 2–21 bands were also observed. The facts suggest that O(1 D) + OCS instead of O(3 P) + OCS governs the generation of SO($v \ge 19$), because the heat of reaction of O(3 P) + OCS \rightarrow SO(X ${}^{3}\Sigma^{-}$) + CO is smaller than the vibrational energies of SO(v = 19).

Fig. 2 shows the time-resolved LIF intensities of SO($X^{3}\Sigma^{-}$, v = 8) observed at the various pressures of OCS. The gray lines denote the time-dependent LIF intensities fit by A[1-exp(-*kt*)] with adjustable parameters A and *k*. OCS pressure dependence of the first-order reaction rate *k* has given the overall rate coefficient of the O(¹D) + OCS reaction to be [2.1 ± 0.3(2 σ)] × 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹.

Reference

1. Chen et al., Chem. Phys. Lett., 247, 313 (1995).

Fig. 1. LIF excitation spectrum of SO($B^{3}\Sigma^{-}-X^{3}\Sigma^{-}$, 0 – 8 band). p(OCS) = 40 mTorr, $p(O_{3}) = 2.4$ mTorr, and p(He) = 10 Torr.

Fig. 2. Time profiles of SO($X^{3}\Sigma^{-}$, v = 8). The partial pressures of OCS were (a) 3, (b) 5, (c) 10, (d) 20, and (e) 41 mTorr. $p(O_{3}) = 2.4$ mTorr, p(He) = 10 Torr.